The Preparation of Pyridinium μ-Oxo-bis[nitrilotriacetato-dioxomolybdate(VI)] and Pyridinium Di-μ-oxo-bis[nitrilotriacetatooxomolybdate(V)] Monohydrate and the X-ray Structure of the Molybdenum(VI) Complex

Keiji Matsumoto,* Yoshiaki Marutani, and Shun-ichiro Ooi Department of Chemistry, Faculty of Science, Osaka City University, Sumiyoshi-ku, Osaka 558 (Received December 7, 1983)

Synopsis. Nitrilotriacetato complexes of Mo^{VI} and Mo^V were prepared and the X-ray structure of the former complex is described. On the basis of the UV-visible and IR spectra and elemental analyses, the latter complex is formulated as (pyH)₂[Mo₂O₄(ntaH)₂]·H₂O.

As a part of studies on the structure of molybdenum complexes, 1-3) we describe here the preparation of nitrilotriacetato complexes of Mo^{VI} and Mo^V, and the X-ray structure of the molybdenum(VI) complex.

Experimental

Preparation of (pyH)₂[Mo₂O₅(ntaH)₂] (1). Pyridine-(py) was added to nitrilotriacetic acid(ntaH₃) (2 m mol) in 20 ml of water and the solution was adjusted to pH 7—8. To this solution was added 2 m mol of MoO₃ and the suspension was warmed on a water bath with stirring for 0.5 h at 60 °C. During the reaction pyridine was added in order to keep pH 7—8. The resulting solution was filtered, evaporated to 4 ml, and methanol (5 ml) and acetone (8 ml) added. Colorless crystals were obtained after standing a couple of days. Yield, 270 mg. Found: C, 32.50; H, 3.36; N, 6.87%. Calcd for (pyH)₂[Mo₂O₅(ntaH)₂]; C, 32.60; H, 3.24; N, 6.92%.

Preparation of (pyH)2[Mo2O4(ntaH)2]·H2O (2). (pyH)2 [MoOCl5] (2 m mol) and ntaH3 (2 m mol) were added to 20 ml of water. The solution was warmed at 60 °C with stirring for 0.5 h and was adjusted to pH 7—8 with pyridine. The solution was filtered, evaporated to 7 ml, and methanol (5 ml) and acetone (5 ml) were added. Brown crystals were obtained after standing for 24 h. Yield, 520 mg. Found: C, 32.47; H, 3.58; N, 6.83%. Calcd for (pyH)2[Mo2O4(ntaH)2]·H2O: C, 32.52; H, 3.48; N, 6.90%.

Crystal Data of 1: C₂₂H₂₆O₁₇N₄Mo₂, F. W.=810.4, triclinic, space group P\overline{1}, a=17.244(8) Å, b=12.161(4) Å, c=7.558(2) Å, α =104.99(3)°, β =83.36(3)°, γ =74.88(3)°, Z=2, $D_{\rm m}$ =1.84 g cm⁻³, $D_{\rm c}$ =1.86 g cm⁻³, μ (Mo $K\alpha$)=9.42 cm⁻¹, λ (Mo $K\alpha$)=0.7107 Å, U=1449.3(8) ų.

The intensities were measured on a Philips PW1100 diffractometer. Crystal size: $0.23\times0.32\times0.39$ mm³; scan speed: 0.033° s⁻¹; scan range: 1.0° ; backgroung measurement at each side of the scan range: half of the scan time; maximum 2θ value: 50° ; number of reflections with $F_0^2 \ge 3\sigma(F_0^2)$: 4338.

The refinement of the structure was performed by the block-diagonal least-squares method. The function minimized was $\sum w(F_o - |F_c|)^2$, where $w=1/\sigma^2(F_o)$ was used. The R value was 0.031 $(R_w = [\sum w\Delta F^2/\sum wF_o^2]^{1/2} = 0.047)$. In the final cycles of the refinement hydrogen atoms were included but their parameters were not refined. Hydrogen atoms defined by the geometry of the complex were located at calculated positions and those bonded to OA5 and OB5 atoms were found in the difference Fourier map. All the parameter shifts were less than 0.3σ . The maximum peak in the final difference Fourier map was $0.6 \, \text{eÅ}^{-3}$. The atomic scattering factors, with corrections for anomalous scattering of Mo were taken from Ref. 4. The $F_o - F_c$ Tables, aniso-

tropic temperature factors, and coordinates of hydrogen atoms are preserved by the Chemical Society of Japan (Document No. 8429). The atomic coordinates are listed in Table 1. Computations were performed on a FACOM 230-60 computer at Osaka City University and on an ACOS 900 computer at the Crystallographic Research Center. Institute for Protein Research, Osaka University. The programs in the UNICS were used.⁵⁰

The absorption spectrum was recorded on a Hitachi 330 spectrophotometer and infrared spectra were obtained in KBr disks with a JASCO IRA-1 spectrophotometer.

Results and Discussion

Figure 1 gives a perspective view of the complex in 1. The complex has an approximate two fold axis. The complex consists of two octahedra sharing a single non-linear oxo bridge (MoA-OB-MoB=167.0(2)°). The two terminal oxo ligands on each Mo are mutually cis and cis to the bridging oxo. The $Mo(O_t)_2$ (O_t=terminal oxo) groups lie on the same side of the complex. The distorted octahedral coordination of each Mo is formed by two terminal and one bridging oxo (O_b), and two carboxylato oxygen atoms and one amino nitrogen atom of ntaH. One carboxylate group in ntaH is free from the coordination. The Mo-O_t distances (1.683(3)-1.700(3) Å) are comparable to those in cis dioxo complexes (Table 2).69 The average Mo-O_b distance is 1.876(6) Å. The two Mo-O distances to the ntaH ligand in each Mo at 2.072(2) (trans to O_b) and 2.151(6) Å (trans to O_t) indicate that Ot has a larger trans bond weakening effect. The Mo-N bond (trans to Ot) is longer than

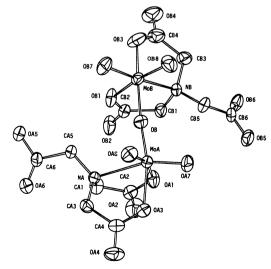


Fig. 1. A perspective view of [Mo₂O₅(ntaH)₂]²-.

Table 1. Atomic coordinates and temperature factors for $(pyH)_2[Mo_2O_5(ntaH)_2]$ with their estimated standard deviations in parentheses

Atom	x	y	z	$U_{ m eq}/{ m \AA}^{2~a)}$		
MoA	0.15255(2)	0.14765(3)	0.27443(5)	0.0282		
NA	0.2809(2)	0.1925(3)	0.2724(4)	0.028		
OA1	0.1769(2)	0.1962(3)	0.0249(4)	0.045		
OA2	0.2424(2)	0.2854(3)	-0.1333(5)	0.064		
OA3	0.1245(2)	0.3315(3)	0.3773(4)	0.039		
OA4	0.1566(2)	0.4916(3)	0.5219(5)	0.052		
OA5	0.4847(2)	0.0136(3)	0.2843(5)	0.051		
OA6	0.4395(2)	0.2092(3)	0.3293(5)	0.055		
OA7	0.0535(2)	0.1628(3)	0.2559(5)	0.049		
OA8	0.1607(2)	0.1304(3)	0.4876(4)	0.045		
CA1	0.3058(3)	0.2108(4)	0.0898(6)	0.039		
CA2	0.2371(3)	0.2356(4)	-0.0146(5)	0.033		
CA3	0.2608(3)	0.3045(4)	0.4286(6)	0.035		
CA4	0.1754(3)	0.3840(3)	0.4447(5)	0.034		
CA5	0.3441(3)	0.0938(4)	0.3021(6)	0.039		
CA6	0.4276(3)	0.1132(4)	0.3062(6)	0.037		
OB	0.2101(2)	-0.0080(2)	0.1252(4)	0.041		
MoB	0.74578(2)	0.17435(3)	-0.01603(5)	0.0289		
NB	0.7966(2)	0.1441(3)	0.2594(4)	0.028		
OB1	0.6568(2)	0.1219(3)	0.1407(4)	0.046		
OB2	0.6241(2)	0.0358(3)	0.3516(5)	0.056		
OB3	0.6896(2)	0.3313(3)	0.2001(4)	0.048		
OB4	0.6657(3)	0.4391(3)	0.4944(5)	0.055		
OB5	0.9948(2)	-0.0506(3)	0.2614(4)	0.042		
OB6	0.9097(2)	0.0968(3)	0.5021(4)	0.042		
OB7	0.6828(2)	0.2200(3)	-0.1573(4)	0.049		
OB8	0.8289(2)	0.2174(3)	-0.0644(5)	0.055		
CB1	0.7503(3)	0.0764(4)	0.3395(6)	0.038		
CB2	0.6708(2)	0.0787(4)	0.2745(5)	0.032		
CB3	0.7813(3)	0.2654(4)	0.3901(6)	0.040		
CB4	0.7063(3)	0.3526(4)	0.3690(6)	0.043		
CB5	0.8847(3)	0.0762(4)	0.1926(6)	0.036		
CB6	0.9307(2)	0.0418(4)	0.3378(6)	0.033		
NC -	-0.0206(3)	0.6729(4)	0.0289(6)	0.062		
CC1	0.0474(3)	0.6120(5)	-0.0954(7)	0.057		
CC2	0.1146(3)	0.5577(4)	-0.0426(8)	0.058		
CC3	0.1133(3)	0.5679(5)	0.1429(8)	0.066		
CC4	0.0420(4)	0.6329(5)	0.2698(7)	0.070		
CC5	-0.0232(4)	0.6843(5)	0.2084(8)	0.058		
ND	0.5988(3)	0.5329(4)	0.1277(8)	0.087		
CD1	0.5555(5)	0.6302(6)	0.2660(9)	0.096		
CD2	0.5043(3)	0.7168(5)	0.0440(8)	0.059		
CD3	0.5052(4)	0.7275(5)	0.2187(9)	0.080		
CD4	0.5485(4)	0.6107(5)	-0.0969(8)	0.079		
CD5	0.5975(4)	0.5210(5)	-0.0494(9)	0.069		

a) $U_{\text{eq}} = (U_{11} + U_{22} + U_{33})/3$.

the Mo-O bond (trans to Ot).

The IR spectrum of 2 gives the stretching vibrations of the Mo=O groups at 920 and 945 cm⁻¹ and that of the Mo₂O₂ group at 783 cm⁻¹. The IR spectra of the

Table 2. Interatomic distances and bond angles with their estimated standard deviations in parentheses

Da. J. 1	-41- (1/8)	Pand anala/	J 10\			
Bond leng	$gtn(\iota/A)$	Bond angle $(\phi/^{\circ})$				
MoA-OB	1.870(3)	MoA-OB-MoB	167.0(2)			
MoA-OA1	2.145(3)	OB-MoA-OA7	104.7(2)			
MoA-OA3	2.071(3)	OB-MoA-OA8	99.2(2)			
MoA-OA7	1.695(3)	OA7-MoA-OA8	106.4(2)			
MoA-OA8	1.695(3)	OA1-MoA-NA	73.6(1)			
MoA-NA	2.413(3)	OA3-MoA-NA	73.0(1)			
MoB-OB	1.881(3)	OB-MoB-OB7	104.8(2)			
MoB-OB1	2.156(3)	OB-MoB-OB8	100.3(2)			
MoB-OB3	2.075(4)	OB7-MoB-OB8	105.3(2)			
MoB-OB7	1.700(3)	OB1-MoB-NB	72.6(1)			
MoB-OB8	1.683(3)	OB3-MoB-NB	73.4(1)			
MoB-NB	2.426(3)					
Possible hydrogen bond(l/Å)a)						
$NC(I)\cdots OA1$ 2.883(6)						
ND···OB3	2.766(7)				
OA5···OB2	2.581 (5)				
OB5OB6(II) 2.634 (4)				

a) Roman numerals refer to the following equivalent positions: (I) -x, 1-y, -z; (II) 2-x, -y, 1-z.

symmetric and assymmetric stretching vibrations of the carboxylato groups are similar in **1** and **2**. The UV-visible spectrum of **2** in pH 4 sodium acetate/acetic acid buffer solution gives two absorption peaks at 380 nm (shoulder, ε =162 l mol⁻¹cm⁻¹) and 297 nm (ε =5080 l mol⁻¹ cm⁻¹). The spectrum is similar to that of [Mo₂O₄(edta)]^{2-,8)} On the basis of the UV-visible and IR spectra and elemental analyses we formulate **2** as pyridinium di- μ -oxo-bis[nitrilotriacetatooxomolybdate(V)] monohydrate, (pyH)₂[Mo₂O₄-(ntaH)₂]·H₂O.

We wish to thank Dr. Takashi Shibahara for the sample of (pyH)₂[MoOCl₅] and Mr. Junichi Gohda for elemental analyses.

References

- 1) T. Shibahara, H. Kuroya, K. Matsumoto, and S. Ooi, Inorg. Chim. Acta, 54, L75 (1981).
- 2) T. Shibahara, S. Ooi, and H. Kuroya, Bull. Chem. Soc. Jpn., 55, 3742 (1982).
- 3) T. Shibahara, H. Kuroya, K. Matsumoto, and S Ooi, Bull. Chem. Soc. Jpn., 56, 2945 (1983).
- 4) "International Tables for X-Ray Crystallography," Kynoch Press, Birmingham (1974), Vol. IV, pp. 71, 148.
- 5) "The Universal Crystallographic Computation Program System," The Crystallographic Society of Japan, Tokyo (1969).
- 6) B. Spivack and Z. Dori, Coord. Chem. Rev., 17, 99 (1975); E. I. Stiefel, Prog. Inorg. Chem., 22, 1 (1977).
- 7) A. Kay and P. C. H. Mitchell, J. Chem. Soc., A, 1970, 2421.
- 8) Y. Sasaki and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1974, 1468.